#! https://zhuanlan.zhihu.com/p/656397349

离散时间傅里叶变换的对称性

任一复数序列\(x[n]\),都能表示成共轭对称序列和共轭反对称序列的和。 \(\displaystyle x[n] = x_e[n] + x_o[n]\) 其中\(x_e[n] = x_e^*[-n] = \frac{1}{2}(x[n]+x^*[-n])\)为共轭对称序列,\(x_o[n] = -x_o^*[-n]=\frac{1}{2}(x[n]-x^*[-n])\)为共轭反对称序列。

对于实序列,\(x_e[n]=x_e[-n]\)\(x_o[n]=-x_o[-n]\),即\(x_e[n]\)为偶序列,\(x_o[n]\)为奇序列。

同样地,离散时间傅里叶变换\(X(e^{j\omega})\)可由共轭对称函数\(X_e(e^{j\omega})\)和共轭反对称函数\(X_o(e^{j\omega})\)的和组成。 \(\displaystyle X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{j\omega})\)

其中\(X_e(e^{j\omega})=X_e^*(e^{-j\omega})=\frac{1}{2}[X(e^{j\omega})+X^*(e^{-j\omega})]\)为共轭对称函数,\(X_o(e^{j\omega})=-X_o^*(e^{-j\omega})=\frac{1}{2}[X(e^{j\omega})-X^*(e^{-j\omega})]\)为共轭反对称函数。

如果\(X(e^{j\omega})\)是实函数,则\(X_e(e^{j\omega})=X_e(e^{-j\omega})\)是偶函数,\(X_o(e^{j\omega})=-X_o(e^{-j\omega})\)是奇函数。

\(x[n]\)为复数序列时,\(X(e^{j\omega})\)的对称性

  • \(x^*[n] \rightarrow X^*(e^{-j\omega})\)

证明: $\(\begin{align*} X(e^{j\omega}) &= \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\\ X^*(e^{j\omega}) &= \sum_{n=-\infty}^{\infty}x^*[n]e^{j\omega n}\\ X^*(e^{-j\omega}) &= \sum_{n=-\infty}^{\infty}x^*[n]e^{-j\omega n} \end{align*}\)$

  • \(x^*[-n] \rightarrow X^*(e^{j\omega})\)

证明: \(\displaystyle X^*(e^{j\omega}) = \sum_{n=-\infty}^{\infty}x^*[-n]e^{-j\omega(-n)}\)

  • \(\textit{Re}\{x[n]\} \rightarrow X_e(e^{j\omega})\)

证明: \(\displaystyle \textit{Re}\{x[n]\} = \frac{1}{2}(x[n]+x^*[n])\) 进行傅里叶变换后得到: \(\displaystyle \frac{1}{2}(X(e^{j\omega})+X^*(e^{-j\omega})) = X_e(e^{j\omega})\)

  • \(j\textit{Im}\{x[n]\} \rightarrow X_o(e^{j\omega})\)

证明: \(\displaystyle j\textit{Im}\{x[n]\} = \frac{1}{2}(x[n]-x^*[n])\) 进行傅里叶变换后得到: \(\displaystyle \frac{1}{2}(X(e^{j\omega})-X^*(e^{-j\omega})) = X_o(e^{j\omega})\)

  • \(x_e[n] \rightarrow X_R(e^{j\omega})=\textit{Re}\{X(e^{j\omega}\}\)

证明: \(\displaystyle x_e[n] = \frac{1}{2}(x[n]+x^*[-n])\)

进行傅里叶变换后得到: \(\displaystyle \frac{1}{2}(X(e^{j\omega})+X^*(e^{j\omega})) = X_R(e^{j\omega})\)

  • \(x_o[n] \rightarrow jX_I(e^{j\omega})=j\textit{Im}\{X(e^{j\omega}\}\)

证明: \(\displaystyle x_o[n] = \frac{1}{2}(x[n]-x^*[-n])\)

进行傅里叶变换后得到:

\(\displaystyle \frac{1}{2}(X(e^{j\omega})-X^*(e^{j\omega})) = jX_I(e^{j\omega})\)

\(x[n]\)为实序列时,\(X(e^{j\omega})\)的对称性

  • 对于任一实序列,其傅里叶变换\(X(e^{j\omega})\)是共轭对称的,即\(X(e^{j\omega})=X^*(e^{-j\omega})\)

证明: \(\displaystyle X(e^{j\omega}) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\)

\(\displaystyle X^*(e^{j\omega}) = \sum_{n=-\infty}^{\infty}x^*[n]e^{j\omega n}\)

\(\displaystyle X^*(e^{-j\omega}) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\)

  • 对于实序列,其傅里叶变换\(X(e^{j\omega})\)的实部是偶函数,虚部是奇函数。

证明: \(\displaystyle X(e^{j\omega}) = X_R(e^{j\omega}) + jX_I(e^{j\omega})\)

\(\displaystyle X^*(e^{-j\omega}) = X_R(e^{-j\omega}) - jX_I(e^{-j\omega})\)

因此: \(\displaystyle X_R(e^{j\omega}) = X_R(e^{-j\omega})\)

\(\displaystyle X_I(e^{j\omega}) = -X_I(e^{-j\omega})\)

  • 对于实序列,其幅度响应\(|X(e^{j\omega})|\)是偶函数,相位响应\(\angle X(e^{j\omega})\)是奇函数,即\(|X(e^{j\omega})|=|X(e^{-j\omega})|\)\(\angle X(e^{j\omega})=-\angle X(e^{-j\omega})\)

证明:

\(\displaystyle |X(e^{j\omega})| = \sqrt{X_R^2(e^{j\omega})+X_I^2(e^{j\omega})}\)

\(\displaystyle |X(e^{-j\omega})| = \sqrt{X_R^2(e^{-j\omega})+X_I^2(e^{-j\omega})}\)

因此: \(\displaystyle |X(e^{j\omega})| = |X(e^{-j\omega})|\)

\(\displaystyle \angle X(e^{j\omega}) = \arctan\frac{X_I(e^{j\omega})}{X_R(e^{j\omega})}\)

\(\displaystyle \angle X(e^{-j\omega}) = \arctan\frac{X_I(e^{-j\omega})}{X_R(e^{-j\omega})}\)

因此: \(\displaystyle \angle X(e^{j\omega}) = -\angle X(e^{-j\omega})\)

  • 任一偶对称的实序列,其傅里叶变换只有实部,虚部为零。

  • 任一奇对称的实序列,其傅里叶变换只有虚部,实部为零。